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Abstract

Edit propagation on images/videos has become more and more popular in recent years due to simple and intuitive interaction. It
propagates sparse user edits to the whole data following the policy that nearby regions with similar appearances receive similar
edits. While it gives a friendly editing mode, it often produces aliasing artifacts on edge pixels. In this paper, we present a simple
algorithm to resolve this artifact for edit propagation. The key in our method is a new representation called Antialias Map, in which
we represent each antialiased edge pixel by a linear interpolation of neighboring pixels around the edge, and instead of considering
the original edge pixels in solving edit propagation, we consider those neighboring pixels. We demonstrate that our work is effective
in preserving antialiased edges for edit propagation and could be easily integrated with existing edit propagation methods such as

[1,2].
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1 1. Introduction

2 With the development of digital image/video cameras and
s online image/video sharing services (e.g. flickr, youtube), it
+ is much easier for people to access images/videos than before.
s The desire to edit the appearance of image/video, such as color,
¢ brightness, tonal values, arises. One way to edit the appearance
7 of images is to first select some regions of interest, and then
s apply a desired edit operation to those regions. While this is a
s common solution in commercial softwares such as Photoshop,
10 selecting those regions of interest, is still a time consuming task,
1 especially for images with complex textures. Another way is to
12 use edit propagation methods [1, 2, 3]. In these methods, users
13 only need to specify sparse strokes indicating specific edits (as
12 shown in Figure 1 (a)), and those edits would be automatically
1s propagate to the whole data following the policy that nearby
16 regions with similar colors receive similar edits.

17 While edit propagation methods provide a much simpler
18 and more convenient way for editing images/videos, it often
19 suffers from a visible aliasing artifact. As illustrated in Fig-
20 ure 1, in this example, users draw a white stroke on the sky
21 and a black one on the building, indicating an edit operation
22 that changes color and another edit operation that keeps origi-
23 nal color, respectively. Figure 1 (b) gives the result generated
24 by a state-of-the-art edit propagation work [1], while it achieves
25 the goal in most parts of the image, however, as shown in the
2 enlarged image in (b), along the boundary of the building, we
27 see an undesired, clear edge.

28 It’s not surprising that edit propagation methods would pro-
29 duce such aliasing artifacts. This is simply because edit propa-
30 gation is a per-pixel algorithm and would fail on antialiased pix-
a1 els. Take Figure 1 as example, in the original image (in Figure 1
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a2 (a)), due to its antialiasing nature, the edge pixels exhibit nei-
as ther the color of sky nor the color of the building, but a kind of
a blending between the colors of sky and the building. However,
a5 under the policy of edit propagation, those antialiased edge pix-
s els are neither similar to the sky pixels nor to the building pixels
a7 due to color differences, this makes appearance of those edge
as pixels unchanged after edit propagation, leading to antialiased
3 edges damaged, as shown in Figure 1 (b). The existence of such
w0 artifacts, has largely reduced the fidelity of results and practica-
a1 bility of edit propagation.

a2 To address this issue, in this paper we introduce a novel,
s efficient framework to eliminate those aliasing artifacts in edit
a4 propagation. Our work is inspired by a recent work on antialias-
ss ing recovery [4], which aims at restoring antialiased edges for
s a range of image filters. Similar to [4], we assume that for an-
47 tialiased edges in images, the value of each pixel could be seen
ss as a linear interpolation from some nearby pixels. Based on this
49 assumption, we introduce a novel representation, the Antialias
so Map, which stores the blending weights and relative positions
st of nearby interpolating pixels for each edge pixel. While pre-
s2 vious works [1, 2, 3] directly consider edge pixels in solving
ss edit propagation, we replace each edge pixel by its interpolat-
s« ing pixels and use those interpolating pixels in edit propaga-
ss tion instead. In turn, the edits of each edge pixel is obtained
ss by an interpolation from those interpolating pixels. As shown
s7 in Figure 1 (c), our method successfully preserves the smooth
ss edge around the boundary of the building after edit propaga-
s tion. Furthermore, our method is independent of a specific edit
e propagation algorithm and could be integrated into any existing
e edit propagation methods such as [1, 2, 3]. The results demon-
e strate that our method effectively preserves the antialiased s-
&s mooth edges without incurring large performance overhead.

e«  The rest of the paper is organized as follows: we will first
es review some important related works in edit propagation and
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(a) original image

(b) result of Xu et al.

(c) our result

Figure 1: An example of edit propagation. (a) shows the original image and user strokes. (b) and (c) show the propagation results
using the method by [1] and our method, respectively. Alias artifacts are visible in (b) along the boundary of the building. Our

method successfully eliminate these artifacts, as shown in (c).

es antialiasing recovery, respectively, in Section 2; the Antialias
&7 Map will be introduced in Section 3; the framework and algo-
es rithm details for edit propagation will be explained in Section
o0 4; after that, results and comparisons will be given in Section 5
70 and conclusions will be made in Section 6.

7 2. Related Works

72 In this section we will review some important prior works
73 in edit propagation and antialiasing recovery, respectively.

7 2.1. Image/Video Editing

7 Image/video editing is an increasingly hot topic in comput-
7 er graphics in recent years. It could be generally divided into
77 two groups: structural editing [5, 6, 7, 8, 9, 10] and appear-
78 ance editing. Appearance editing includes tone editing [11, 12,
7 13, 14, 15, 16], colorization [17, 18, 19, 20], dehazing [21, 22,
w0 23, 24, 25], and edge-aware editing [26, 27, 28, 29, 30, 31],
a1 etc.. Recently, edit propagation methods [1, 2, 3, 32] allow
&2 a simpler interaction mode for appearance editing. In these
s methods, users specify edits in some sparse locations on im-
s ages/videos, and those edits are automatically propagated to the
ss whole data satisfying the policy that nearby pixels having simi-
ss lar appearances receive similar edits. Usually, edit propagation
&7 methods define affinities between pairs of pixels according to
ss their appearance/position distances, and different optimization
as schemes are utilized to satisfy the policy. In particular, Pellaci-
o ni et al. [32] approximate pixel relations using a sparse graph
o1 and reduce edit propagation problem to solving a sparse linear
o system. An and Pellacini [3] introduced a more robust algo-
s rithm, which considers all-pairs affinities between pixels, and
9 approximates the huge affinity matrix using a low rank approx-
os imation. To accelerate edit propagation, Xu et al. [1] uses a
9 k-d tree to organize pixels into hierarchical clusters in a high
o7 dimensional space, instead of propagating on individual pixel-
s S, they propagate on clusters which largely reduced time and
9 memory cost. Xiao et al. [33] employs a similar hierarchi-
100 cal structure for acceleration. Li et al. [2] further speeds up
101 edit propagation by formulating it as a function interpolation
102 problem. Bie et al. [34] accelerate edit propagation using stat-
103 ic clustering and efficient sampling scheme. Besides images
104 and videos, edit propagation could be also used to edit spatially
105 varying bidirectional reflectance distribution functions obtained
106 by [35, 36, 37, 38] and bidirectional texture functions [39, 40].

107 Recently, Farbman et al. [41] proposes to use diffusion distance,
108 instead of Euclidean distance, to define affinities between pix-
109 els, which better account for the global distribution of pixels.

110 2.2. Antialiasing Recovery

111 In computer graphics, many techniques have been proposed
112 to render antialiased images [42, 43], antialiased textures [44,
113 45] and antialiased shadows [46, 47, 48]. However, only a
114 few works focus on recovering smooth, antialiased edges from
s aliased 2D images. Some exceptional works include Principle
116 Component Analysis (PCA) [49, 50] and morphological an-
17 tialiasing [51]. In particular, morphological antialiasing aims
s at reducing aliasing artifacts for rendered images entirely us-
119 ing image based methods. It looks for certain patterns of dis-
120 continue geometry and replace them using smooth edges esti-
12 mated by an antialiased edge model. Image vectorization tech-
122 niques [52, 53, 54] convert a bitmap image to a vectorized im-
123 age, which could also be used to antialias certain types of im-
124 ages. Recently, Yang et al. [4] introduced a method for recover-
125 ing antialiased edges destroyed by a range of non-linear image
126 filters. In this work, an analytic edge model is estimated using
127 the original image, and is applied to the filtered image to re-
12s move aliasing artifacts. It works well for many non-linear im-
129 age filters such as intensity thresholding, tone mapping, color
130 to gray and so on, however, since it requires perfect pixel cor-
131 respondence between the original and filtered images, it cannot
122 handle filters like Gaussian blurring. Besides, it’s not clear how
133 to extend this method to edit propagation.

Compared to the conference paper [55], We have extended
135 our framework to handle interpolation based edit propagation.
136 This is a significant new contribution compared to [55], since
177 we have demonstrated the proposed Antialias Map is not limit-
138 ed to optimization based edit propagation, however, it could al-
139 s0 be used for interpolation based edit propagation. This demon-
140 strates that the proposed Antialias Map is independent with spe-
1 cific edit propagation methods and could be potentially com-
122 bined with any edit propagation methods.

134

143 3. Antialias Map

144 As mentioned before, since antialiased edges in images are
15 often smooth, we assume the value of an edge pixel could be
146 approximated by a linear interpolation of some nearby pixels.

127 We present Antialias Map to store those edge pixels. Besides,
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18 in Antialias Map, for each edge pixel ,we also store the infor-
149 mation of its neighboring interpolating pixels, including both
150 interpolating weights and relative positions. For videos, we s-
151 tore an Antialias Map for every frame. Since our work is built
12 upon the antialiasing recovery work of [4], to make our paper
153 self-contained, before introducing the details of Antialias Map,
15« we will first explain some necessary backgrounds in [4] in Sec-
155 tion 3.1.

156 3.1. Antialiasing Recovery

Images often have smooth, antialiased edges. However,
1ss these desired properties will be destroyed by a range of non-
159 linear image filters, such as intensity thresholding, tone map-
10 ping, etc.. After applying those image filters, smooth bound-
161 aries become zigzag like. Yang et al. [4] proposed a tech-
162 nique to remove these aliasing artifacts in filtered images. Their
1es method proceeds in several steps:

1e« Edge model. For each pixel i in the original image, they choose
165 the two extremum colors ¢; and ¢ (j,k are corresponding pixel-
166 8) in the principle direction of color space from the neighboring
167 8 pixels (in 3 x 3 size neighborhood). The principle direction is
1es determined using an Expectation Maximazation (EM) scheme.
19 Using extremum colors to reconstruct the color ¢; of pixel 7, the
170 interpolation weights @, could be determined by minimiz-
171 1NG:

157

d; = ||((XijCj+OCika) —CiH

ey

72 where it satisfies o;; + o = 1.

173 Probability of lying on edges. After that, they estimate the
174 probability of each pixel that it lies on an edge. For each pixel
175 I, They define an edge strength e;, which is the product of the
176 Sobel edge detector at both the original image and the filtered
177 image. The probability value of a pixel lying on an edge is
178 defined as:

Bi = G(d;, 04)(1 —G(e;,0.)) (2)

179 where G(d, ©) is a 1D Gaussian defined as exp(—d?/c?), d; is
180 the residual distance defined in Equation 1, o4 and o, are two
11 controllable parameters. [3; is set as zero if ¢; > 30,.

122 Recovery the filtered image. Denote f; is the color value of
183 pixel i on the filtered image. The recovered color value r; could
184 be obtained by solving the linear system below:

ri = Bi(oyjrj+ air) + (1 — Bi) fi (3)

1s This is a large sparse linear system and could be solved effi-
18s ciently by a few iterations using the Jacobi method.

187 3.2. Compute Antialias Map

As discussed in Section 3.1, in [4], the value of each an-
189 tialiased edge pixel is approximated by a blending of 2 near-
190 by pixels in the 3 x 3 neighborhood. Results are progressively
11 refined by iterations of Equation 3. Instead of using a 3 x 3
12 neighborhood, Antialias Map approximates the value of each
13 pixel by a blending of pixels from a larger neighborhood:

188

(a) source image (b) initial value

0.16

0.08

(c) 1 iteration (d) 2 iterations

Figure 2: Antialias Map construction. (a) is the source image;
(b),(c) and (d) give the Antialias Map of a certain pixel after
0,1,2 iterations, respectively. Divisible pixels are colored black,
while indivisible pixels are colored red.

Ci = ZW,’ jCj (4)
J

1.4 where j is the interpolating pixel in the neighborhood of i, and
195 W;; 18 the interpolating weight from pixel i to j, and satisfies
16 ) jwij = 1. Note that w;; does not necessarily equal to wj;. Al-
17 S0 note that Equation 4 is not an optimization target, and the
18 interpolating weights are not solved from Equation 4. Instead,
19 the interpolating weights are computed through an iteractive ap-
200 proach, which will be explained in detail below.

201 Antialias Map has two advantages over the edge model pro-
202 posed in [4]. First, since it uses a larger neighborhood to ap-
203 proximate an antialiased pixel, it leads to a more accurate ap-
20« proximation; Secondly, the Antialias Map only depends on the
205 structure of original image itself, it could be computed and s-
206 tored before edit propagation, so it avoids the cost of iterations
207 at run-time edit propagation stage. Antialias Map stores all in-
20 terpolating weights w;;, and it is sparse since it only considers
200 those edge pixels (e.g. whose edge strength f3; is non-zero) and
210 it only stores non-zero weights. Specifically, we store a set of
an triples (Ax;j, Ayjj,wi;) for each edge pixel i. Here j is its inter-
212 polating pixel, Ax;;,Ay;; and w;; are the X,y position offset and
213 interpolating weight from i to j, respectively. In the follow-
214 ing parts, we will explain how to compute the Antialias Map in
215 detail.

216 Initialization. In this step, we first use [4] to obtain the two
217 extremum neighbors j, k, the blending factors o;;,0 and the
218 edge probability f; for each pixel i. We have already explained
219 how to compute those values in Section 3.1. Care must be taken
220 Wwhen computing the edge probability ;. In [4], it defines edge
221 strength of each pixel as the product of Sobel edge detector on
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Initialization
For all pixels i
Compute the blending factors o;;, Qi
and the edge probability ;.
End For
Computation
Step 1: Antialias Map S; = {{0,0,1}}
Step 2:
for each triple {Ax;j, Ay;j, wi;} in S;
if the pixel j is divisible and B;w;; > o,
fetch blending factors ojy, ,jx, and edge probability B;;
update the weight of pixel j to (1—f;)wij;
mark pixel j as indivisible;
add pixel k; and k, to Antialias Map S;, with weights
Wity = Gk, Biwij Wiy = @y Bjwi,
mark these two pixels as divisible.
end if
end for
if iteration number reaches N
End.
else
go back to Step 2.
end if

Table 1: Pseudocode for Antialias Map Construction.

222 both original and filtered images, which means it requires to ob-
223 tain the aliased filtered image before antialiasing recovery. We
224 observe that in edit propagation, the appearances are changed
225 smoothly, so that the propagated result images have roughly
226 the same structure as the original images. To avoid the cost to
227 generate an aliased edit propagation result, we make a modifi-
228 cation, instead, we define the edge strength as the Sobel edge
229 detector only on the original image. Once the edge strength is
20 computed, we use Equation 2 to compute edge probability ;.
231 Note that only the pixels with non-zero f3; are considered as an-
232 tialiased edge pixels and stored in Antialias Map. The pixels
233 with zero value of 3; are considered as non-edge pixels.

2. Constructions.  Similar to [4], we construct Antialias Map
25 by a few iterations. However, they obtain the final antialiased
236 results through iterations, but we obtain Antilias Map through
237 iterations, which could be precomputed and stored before edit
28 propagation. For each antialiased edge pixel 7, the Antialias
23 Map starts with a set containing only one triple:

S; = {{0,0,1}} )

20 This means that the value of the pixel i could be seen as the
241 value of itself multipled by weight 1.0, which is definitely true.
22 We also illustrate this iteration process in Figure 2. As shown
203 in Figure 2 (b), now the Antialias Map only contains itself with
20 weight 1.0. And this pixel is marked as divisible, which is paint-
2ss ed using black color in Figure 2.

At each iteration, we expand each divisible pixel (e.g. j)
2¢7 into 3 pixels. These 3 pixels are the two neighboring extremum
208 pixels (e.g., k1 and k») and itself (e.g. j), whose corresponding
220 Weights are defined in Equation 3. Specially, the weight of j
20 is replaced by (1 — B;)w;; and j is marked as indivisible; the
251 two newly added extremum pixels are marked as divisible, and
22 their weights are set as wy, = Qj, B;wi; and wir, = Qjx, Bjwij,
253 respectively. At the next iterations, we recursively find the di-
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Figure 3: the size of Antialias Map to the size of image as a
function of threshold ©,. This curve is generated from a 240K
photographed image (the image in Figure 1) and using maxi-
mum iteration number N = 4.

254 visible pixels and expand them to new pixels.

255 Let’s also take Figure 2 as example and explain this process
256 in detail. For simplicity, we assume that for all the pixels, the
257 edge probability f is 0.8 and the blending factor « is 0.5. After
258 the first iteration, the center pixel is expanded to 3 pixels, so
250 that the Antialias Map grows to contain 3 triples (as shown in
260 Figure 2 (c) ):

Sl:{{070702}’{0371)04}?{171704}} (6)
After the second iterations, similarly, the newly added 2 pix-

262 els in first iteration are both expanded to 3 pixels, so that the
26s Antialias Map grows to contain 7 triples (as shown in Figure 2

264 (d) )Z

261

S; ={{0,0,0.2},{0,—1,0.08},{1,1,0.08},
(7
{~1,0,0.16},{1,-2,0.16},{0,1,0.16},{2,0,0.16} }

265 Notice that at all iterations, the sum of weights equals to
266 one. From an algebraic aspect, Antialias Map could also be
257 treated as expanding Equation 3 to multiple variables. The
268 triples in Antialias Map will extend to (2N + 1) x (2N + 1)
2s¢ neighborhood after n iterations.

270 Stop Criterion. The size of the Antialias Map grows as we
271 iterate. We define 2 criterions to stop the recursive iteration:

272 e When iteration number reaches a predefined number N;

273 e When the result product(product of the interpolation weight
of a divisible pixel w;; and its edge probability f3;) is s-

maller than a predefined threshold o,.

274

275

276 The pseudocode of Antialias Map construction is given in Ta-
277 ble 1. We have also tested how two parameters influence the
27 performance of our algorithm. Figure 3 illustrates the size of
279 Antialias Map to the size of image as a function of weight
280 threshold o,. Setting 6, = 0 means the iteration stops only
251 when it reaches the largest iteration number N, while setting
22 0, = | means no iteration. As shown in Figure 3, when in-
283 creasing o, from 0 to 1, the size of Antialias Map decreases
284 rapidly.
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25 4. Improved Framework of Edit Propagation

286 In this section we will discuss how to use Antialias Map in
287 the pipeline of edit propagation to remove the aliasing artifacts.
288 In edit propagation, users specify edits in some sparse locations
280 ON images/videos, and those edits are automatically propagated
200 to the whole data satisfying the policy that nearby pixels having
201 similar appearances receive similar edits. Usually, they define
202 a feature vector for each pixel, usually a 5-dimensional vector
203 , which combines color (e.g. 3D), pixel position (e.g. 2D). For
204 videos, another dimensional is added to account for time. The
205 affinity between every two pixels are defined by the Euclidean
206 distance between their feature vectors, which is then used to
27 guide the propagation. Commonly, edit propagation methods
20 could be divided into two groups, depending on which scheme
209 15 used to formulate the problem: optimization based [1, 3] and
a00 interpolation based [2]. We show that Antialias Map could be
a1 used in both groups for antialias recovery.

sz 4.1. Optimization based Edit Propagation

as Backgrounds. As mentioned above, the affinity value between
a0+ two pixels i,j is usually defined as:

aj=exp(~(6-1)°) ®)

as where f; is the feature vector of pixel i, which is defined as a SD
a0s vector for images:

f; = (ci/oc, pi/op) 9

a7 Where ¢;,p; is the color in LAB color space and the pixel po-
s0s sition of pixel i, respectively. o, and o), are two parameters to
a0e control the relative propagating distance.

In [3], edit propagation is formulated as an optimization
an problem. Solving propagated edits e is deduced to minimize
a2 the energy function below:

ijzij(ei—gj)2+lzzzj(€i _ej)z
i,j j

i,J
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(10)

s13 where i, j enumerates all pixels; b; is 1 when pixel j is covered
s14 by stroke and is O elsewhere; g; is the user specified edit at pix-
ais el j; e; is the propagated edit at pixel i that we want to solve.
ais The first term accounts for how it satisfies user input while the
a7 second term accounts for the edit propagation policy that simi-
s1s lar pixels receive similar edits. A is used to control the relative
s19 weight between the two terms and is usually set to Y.;b;/Y.; 1
a20 to make the two terms have roughly the same contributions.

Since the energy function in Equation 10 is quadratic, min-
a2 Imizing it is equivalent to solving a linear system defined by
a2s a large affinity matrix. Therefore, they used low rank colum-
224 N sampling to approximate the affinity matrix and further pro-
a5 posed an approximated algorithm to fast find a solution. To
az6 accelerate edit propagation and extend it to videos, Xu et al. [1]
a27 proposed to use k-d tree to organize pixels into hierarchical
azs clusters. Instead of propagating on pixels, they propagate on
as2e clusters, whose number is much smaller than the number of
a0 pixels, thus acceleration is achieved. Finally, edits of individual

321

a1 pixels are obtained by multi-linear interpolation from clusters.
x2 They also adopted an optimization based method to solve for
ass edit propagation.

s« Modified Formulation. As illustrated in the teaser image, tra-
ass ditional edit propagation produces artifacts on object bound-
ass aries. This artifact could be easily explained. Assume a very
a7 simple image composed of 2 region, one red region and anoth-
xs er blue region. The edge pixels along the boundary of the two
e regions would appear yellow due to antialiasing. Suppose user
a0 specifies some edits on the red region, it is also desired to prop-
a1 agate the edits to the edge pixels with some weight according to
a2 antialiasing opacity. However, since the edge pixels appearance
ass yellow, it exhibits a large difference to pixels in the red region,
as hence would not receive any propagated edits.

To address this issue, we use Antialias Map, in which, the
yellow edge pixels would be represented by a linear blending of
some red and blue neighboring pixels. Instead of propagating to
the edge pixels, we propagate to the neighboring interpolating
pixels, and obtain the edit of edge pixel by blending the edits
from the interpolating pixels. Mathematically, we modify the
formulation in Equation 10 to:

ij%yjzij(d —g)*+A Z%‘%’Zij(eﬁ —e})?
1,] L]

Y

xs where i, j enumerates all interpolating pixels; % considers the
as multiplicity of pixel i serving as interpolating pixels, which is
w7 defined as ¥ = Ly wii; & is defined as g = Xy wi;g;/ Lo wij-
The modified energy function has the same form as the orig-
xs inal energy function in Equation 10, so that it could be solved
ss0 in the same way using either low rank column sampling [3] or
ast k-d tree clustering [1].

ss» Interpolation. After solving for the edits ¢’ on the interpolating
ass pixels in Equation 11, it is easy to obtain the edits on the edge
ass pixels through interpolation:

/
e = ZW,‘je‘j
J
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12)

ass 4.2, Interpolation based Edit Propagation
ass Backgrounds. While most works adopt an optimization based
ss7 method to solve edit propagation, Li et al. [2] proposed a d-
ass ifferent approach. They observe that the edits span in the high
a9 dimensional feature space form a smooth function, which could
a0 be approximated well by function interpolations. Therefore,
a6t they use sum of RBFs (Radial Basis Function) to approximate
ae2 edits:

i~ Y amG(||fi—fnl]) (13)

m

sss where m iterates over all RBFs; G is RBF Gaussian function;
ass am,fy, 1S the m-th RBF coefficient and center, respectively. The
ass centers of RBFs are randomly selected from the pixels covered
ass by user stroke. The coefficients of RBFs are solved by mini-
a7 mizing the sum of differences on user specified edits:

Y (gi— Y anG(lIt; —full)? (14)
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ass Where j iterates over all pixels covered by user strokes. To re-
ase strict the coefficients to be non-negative, they use a non-negative
a7 least square solver.
s71 Modified Formulation. The above formulation would also
a2 produce aliasing artifacts on object boundaries. To remove the
a7s artifacts using Antialias Map, similarly, we build the smooth
ar function over the interpolating pixels, instead of the original
ars pixels. Equation 14 is modified to:
Y (g = Y anG(|If; — ) (15)
j m
a7s where j iterates over all interpolating pixels that have contri-
s77 butions to user stroke pixels; y; considers the multiplicity of
a7s pixel j serving as interpolating pixels, which is defined as y; =
o Y wjs & is defined as g = Yy wijgj/ Liwj» where k is iter-
aso ating over user stroke pixels.
381 After solving for the RBF coefficients, we use Equation 13
a2 to obtain the edits on interpolating pixels. Lastly, we use Equa-
ass tion 12 to obtain the edits on the edge pixels.

s« 5. Comparisons and Results

sss 5. 1. Comparisons

sss Comparison of weight threshold o,. In Figure 4, we have
a7 compared edit propagation results generated by Xu et al. [1]
ass and by our method with different weight threshold 6,. From
ase the results, we can see artifacts using the method by Xu et al,
as where the pixels along the boundary of the toy undesirably ap-
sor pear green. Using a large value of o, (e.g. o, = 0.8,0.4) still
se2 produce these artifacts. But using a relatively small value of o,
an (e.g. 0, =0.1,0.0) fully removes the artifacts.

s« Comparison of maximum iteration number N. In Figure 5,
ass we have compared edit propagation results generated by Xu
ass et al. [1] and by our method with different maximum iteration
a7 number N. From the results, we can see that using a relatively
ass large value of N (e.g. N = 4,8) could produce smooth transi-
ase tions along boundaries.

a0 5.2. Results

401 All these results and performance are obtained using a con-
a2 sumer level PC with a 3.0GHz Intel Core2Duo CPU and 4GB
ss RAM. As demonstrated in the comparisons, setting 6, = 0.1
s and N = 4 already leads to very good results. So in our imple-
s mentation, we fix 6, = 0.1 and N = 4. These two parameters
a0s could still be adjusted for better performance or accuracy. In
a7 our experiment, for a single image, the total size of Antialias
s Map (e.g. the total number of triples) is usually about 1.5 —2.0
a00 times of the image resolution. So that it only needs small extra
a10 Space to store the Antialias Map.

In Figure 6, we give 2 image results generated by the k-d
a1z tree approach [1] and by our method. In Figure 7, we give 2
a13 image results generated by the RBF interpolation approach [2]
12 and by our method. In Figure 8, we give 1 image result gener-
a1s ated by AppProp [3] and by our method. In Figure 9, we com-
16 pare a video example using the k-d tree approach [2] and using
a7 our method, respectively. In all these examples, after applying
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a5 our methods, the aliasing artifacts along the object boundaries
a19 are successfully removed. The performance value is reported in
a0 Table 2. Note that the time cost reported for the video example
s21 in Table 2 is the time for processing the whole video (all the
s22 frames). It could be substantially accelerated for fast preview-
s23 ing purposes, when users desire to see a single (or a few) frames
s24 Of the video, and only the pixels on the previewing frames need
425 t0 be propagated.

426 6. Conclusion

In this paper we have presented a novel, efficient approach
s28 to remove aliasing artifacts in edit propagation. we introduced
a29 a novel representation, the Antialias Map, to store the blending
w0 Weights and relative positions of nearby interpolating pixels for
s31 each edge pixel. While previous works [1, 2, 3] directly consid-
a2 er edge pixels in edit propagation process, instead, we replace
a3 each edge pixel by its interpolating pixels and consider those
s34 interpolating pixels in edit propagation process. Our method is
s3s independent of a specific edit propagation algorithm and could
s be integrated into any existing edit propagation methods such as
a7 [1, 2, 3]. The results demonstrates that our method effectively
a8 and efficiently restores the antialiased smooth edges.

s There are some works that we would like to address in the
aao future. First, we currently deal with videos frame by frame, and
a1 for each frame we use a 2D Antialias Map. We would like to
a2 explore methods to extend Antialias Map to a 3D representa-
as3 tion so that it could also handle motion blurs in the temporal di-
s mension; Secondly, we would like to investigate how Antialias
s Map could be used for other image related applications, such as
1 image compositing [56, 57, 58, 59] and non-photorealistic ren-
a7 dering [60], since it is also desired to preserve antialiased edges
1s When compositing new images.
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Improved time 32ms 30ms 25ms 38ms 32ms 36ms S51ms 8s
RBF memory 1IMB 1IMB IMB IMB 1IMB IMB IMB 1MB

Table 2: Performance comparison between the k-d tree method [1], our method combined with the k-d tree approach, RBF
method [2] and our method combined with the RBF method. Both running time and memory cost are reported.

original image result of Xu et al.

our result

Figure 6: Results generated by Xu et al. [1] and by our method. The first column give the original images, the second and third
columns are results generated by Xu et al.; the fourth and fifth columns are results generated by our method.
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original image result of Li et al. our result

Figure 7: Results generated by Li et al. [2] and by our method. The first column give the original images; the second and third
columns are results generated by Li et al.; the fourth and fifth columns are results generated by our method.

original image result of An et al. our result

Figure 8: Results generated by An et al. [3] and by our method. The first column give the original images, the second and third
columns are results generated by An et al.; the fourth and fifth columns are results generated by our method.
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our result

frame 237 frame 259

Figure 9: Video results generated by Li et al. and our method. We have shown two frames of the video and clearly our method
improves a lot along the boundaries.



