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Abstract

Edit propagation on images/videos has become more and more popular in recent years due to simple and intuitive interaction. It
propagates sparse user edits to the whole data following the policy that nearby regions with similar appearances receive similar
edits. While it gives a friendly editing mode, it often produces aliasing artifacts on edge pixels. In this paper, we present a simple
algorithm to resolve this artifact for edit propagation. The key in our method is a new representation called Antialias Map, in which
we represent each antialiased edge pixel by a linear interpolation of neighboring pixels around the edge, and instead of considering
the original edge pixels in solving edit propagation, we consider those neighboring pixels. We demonstrate that our work is effective
in preserving antialiased edges for edit propagation and could be easily integrated with existing edit propagation methods such as
[1, 2].
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1. Introduction1

With the development of digital image/video cameras and2

online image/video sharing services (e.g. flickr, youtube), it3

is much easier for people to access images/videos than before.4

The desire to edit the appearance of image/video, such as color,5

brightness, tonal values, arises. One way to edit the appearance6

of images is to first select some regions of interest, and then7

apply a desired edit operation to those regions. While this is a8

common solution in commercial softwares such as Photoshop,9

selecting those regions of interest, is still a time consuming task,10

especially for images with complex textures. Another way is to11

use edit propagation methods [1, 2, 3]. In these methods, users12

only need to specify sparse strokes indicating specific edits (as13

shown in Figure 1 (a)), and those edits would be automatically14

propagate to the whole data following the policy that nearby15

regions with similar colors receive similar edits.16

While edit propagation methods provide a much simpler17

and more convenient way for editing images/videos, it often18

suffers from a visible aliasing artifact. As illustrated in Fig-19

ure 1, in this example, users draw a white stroke on the sky20

and a black one on the building, indicating an edit operation21

that changes color and another edit operation that keeps origi-22

nal color, respectively. Figure 1 (b) gives the result generated23

by a state-of-the-art edit propagation work [1], while it achieves24

the goal in most parts of the image, however, as shown in the25

enlarged image in (b), along the boundary of the building, we26

see an undesired, clear edge.27

It’s not surprising that edit propagation methods would pro-28

duce such aliasing artifacts. This is simply because edit propa-29

gation is a per-pixel algorithm and would fail on antialiased pix-30

els. Take Figure 1 as example, in the original image (in Figure 131
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(a)), due to its antialiasing nature, the edge pixels exhibit nei-32

ther the color of sky nor the color of the building, but a kind of33

blending between the colors of sky and the building. However,34

under the policy of edit propagation, those antialiased edge pix-35

els are neither similar to the sky pixels nor to the building pixels36

due to color differences, this makes appearance of those edge37

pixels unchanged after edit propagation, leading to antialiased38

edges damaged, as shown in Figure 1 (b). The existence of such39

artifacts, has largely reduced the fidelity of results and practica-40

bility of edit propagation.41

To address this issue, in this paper we introduce a novel,42

efficient framework to eliminate those aliasing artifacts in edit43

propagation. Our work is inspired by a recent work on antialias-44

ing recovery [4], which aims at restoring antialiased edges for45

a range of image filters. Similar to [4], we assume that for an-46

tialiased edges in images, the value of each pixel could be seen47

as a linear interpolation from some nearby pixels. Based on this48

assumption, we introduce a novel representation, the Antialias49

Map, which stores the blending weights and relative positions50

of nearby interpolating pixels for each edge pixel. While pre-51

vious works [1, 2, 3] directly consider edge pixels in solving52

edit propagation, we replace each edge pixel by its interpolat-53

ing pixels and use those interpolating pixels in edit propaga-54

tion instead. In turn, the edits of each edge pixel is obtained55

by an interpolation from those interpolating pixels. As shown56

in Figure 1 (c), our method successfully preserves the smooth57

edge around the boundary of the building after edit propaga-58

tion. Furthermore, our method is independent of a specific edit59

propagation algorithm and could be integrated into any existing60

edit propagation methods such as [1, 2, 3]. The results demon-61

strate that our method effectively preserves the antialiased s-62

mooth edges without incurring large performance overhead.63

The rest of the paper is organized as follows: we will first64

review some important related works in edit propagation and65
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(a) original image (b) result of Xu et al. (c) our result

Figure 1: An example of edit propagation. (a) shows the original image and user strokes. (b) and (c) show the propagation results
using the method by [1] and our method, respectively. Alias artifacts are visible in (b) along the boundary of the building. Our
method successfully eliminate these artifacts, as shown in (c).

antialiasing recovery, respectively, in Section 2; the Antialias66

Map will be introduced in Section 3; the framework and algo-67

rithm details for edit propagation will be explained in Section68

4; after that, results and comparisons will be given in Section 569

and conclusions will be made in Section 6.70

2. Related Works71

In this section we will review some important prior works72

in edit propagation and antialiasing recovery, respectively.73

2.1. Image/Video Editing74

Image/video editing is an increasingly hot topic in comput-75

er graphics in recent years. It could be generally divided into76

two groups: structural editing [5, 6, 7, 8, 9, 10] and appear-77

ance editing. Appearance editing includes tone editing [11, 12,78

13, 14, 15, 16], colorization [17, 18, 19, 20], dehazing [21, 22,79

23, 24, 25], and edge-aware editing [26, 27, 28, 29, 30, 31],80

etc.. Recently, edit propagation methods [1, 2, 3, 32] allow81

a simpler interaction mode for appearance editing. In these82

methods, users specify edits in some sparse locations on im-83

ages/videos, and those edits are automatically propagated to the84

whole data satisfying the policy that nearby pixels having simi-85

lar appearances receive similar edits. Usually, edit propagation86

methods define affinities between pairs of pixels according to87

their appearance/position distances, and different optimization88

schemes are utilized to satisfy the policy. In particular, Pellaci-89

ni et al. [32] approximate pixel relations using a sparse graph90

and reduce edit propagation problem to solving a sparse linear91

system. An and Pellacini [3] introduced a more robust algo-92

rithm, which considers all-pairs affinities between pixels, and93

approximates the huge affinity matrix using a low rank approx-94

imation. To accelerate edit propagation, Xu et al. [1] uses a95

k-d tree to organize pixels into hierarchical clusters in a high96

dimensional space, instead of propagating on individual pixel-97

s, they propagate on clusters which largely reduced time and98

memory cost. Xiao et al. [33] employs a similar hierarchi-99

cal structure for acceleration. Li et al. [2] further speeds up100

edit propagation by formulating it as a function interpolation101

problem. Bie et al. [34] accelerate edit propagation using stat-102

ic clustering and efficient sampling scheme. Besides images103

and videos, edit propagation could be also used to edit spatially104

varying bidirectional reflectance distribution functions obtained105

by [35, 36, 37, 38] and bidirectional texture functions [39, 40].106

Recently, Farbman et al. [41] proposes to use diffusion distance,107

instead of Euclidean distance, to define affinities between pix-108

els, which better account for the global distribution of pixels.109

2.2. Antialiasing Recovery110

In computer graphics, many techniques have been proposed111

to render antialiased images [42, 43], antialiased textures [44,112

45] and antialiased shadows [46, 47, 48]. However, only a113

few works focus on recovering smooth, antialiased edges from114

aliased 2D images. Some exceptional works include Principle115

Component Analysis (PCA) [49, 50] and morphological an-116

tialiasing [51]. In particular, morphological antialiasing aims117

at reducing aliasing artifacts for rendered images entirely us-118

ing image based methods. It looks for certain patterns of dis-119

continue geometry and replace them using smooth edges esti-120

mated by an antialiased edge model. Image vectorization tech-121

niques [52, 53, 54] convert a bitmap image to a vectorized im-122

age, which could also be used to antialias certain types of im-123

ages. Recently, Yang et al. [4] introduced a method for recover-124

ing antialiased edges destroyed by a range of non-linear image125

filters. In this work, an analytic edge model is estimated using126

the original image, and is applied to the filtered image to re-127

move aliasing artifacts. It works well for many non-linear im-128

age filters such as intensity thresholding, tone mapping, color129

to gray and so on, however, since it requires perfect pixel cor-130

respondence between the original and filtered images, it cannot131

handle filters like Gaussian blurring. Besides, it’s not clear how132

to extend this method to edit propagation.133

Compared to the conference paper [55], We have extended134

our framework to handle interpolation based edit propagation.135

This is a significant new contribution compared to [55], since136

we have demonstrated the proposed Antialias Map is not limit-137

ed to optimization based edit propagation, however, it could al-138

so be used for interpolation based edit propagation. This demon-139

strates that the proposed Antialias Map is independent with spe-140

cific edit propagation methods and could be potentially com-141

bined with any edit propagation methods.142

3. Antialias Map143

As mentioned before, since antialiased edges in images are144

often smooth, we assume the value of an edge pixel could be145

approximated by a linear interpolation of some nearby pixels.146

We present Antialias Map to store those edge pixels. Besides,147
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in Antialias Map, for each edge pixel ,we also store the infor-148

mation of its neighboring interpolating pixels, including both149

interpolating weights and relative positions. For videos, we s-150

tore an Antialias Map for every frame. Since our work is built151

upon the antialiasing recovery work of [4], to make our paper152

self-contained, before introducing the details of Antialias Map,153

we will first explain some necessary backgrounds in [4] in Sec-154

tion 3.1.155

3.1. Antialiasing Recovery156

Images often have smooth, antialiased edges. However,157

these desired properties will be destroyed by a range of non-158

linear image filters, such as intensity thresholding, tone map-159

ping, etc.. After applying those image filters, smooth bound-160

aries become zigzag like. Yang et al. [4] proposed a tech-161

nique to remove these aliasing artifacts in filtered images. Their162

method proceeds in several steps:163

Edge model. For each pixel i in the original image, they choose164

the two extremum colors c j and ck ( j,k are corresponding pixel-165

s) in the principle direction of color space from the neighboring166

8 pixels (in 3×3 size neighborhood). The principle direction is167

determined using an Expectation Maximazation (EM) scheme.168

Using extremum colors to reconstruct the color ci of pixel i, the169

interpolation weights αi j,αik could be determined by minimiz-170

ing:171

di =
∥∥(αi jc j +αikck)− ci

∥∥ (1)

where it satisfies αi j +αik = 1.172

Probability of lying on edges. After that, they estimate the173

probability of each pixel that it lies on an edge. For each pixel174

i, They define an edge strength ei, which is the product of the175

Sobel edge detector at both the original image and the filtered176

image. The probability value of a pixel lying on an edge is177

defined as:178

βi = G(di,σd)(1−G(ei,σe)) (2)

where G(d,σ) is a 1D Gaussian defined as exp(−d2/σ2), di is179

the residual distance defined in Equation 1, σd and σe are two180

controllable parameters. βi is set as zero if ei > 3σe.181

Recovery the filtered image. Denote fi is the color value of182

pixel i on the filtered image. The recovered color value ri could183

be obtained by solving the linear system below:184

ri = βi(αi jr j +αikrk)+(1−βi) fi (3)

This is a large sparse linear system and could be solved effi-185

ciently by a few iterations using the Jacobi method.186

3.2. Compute Antialias Map187

As discussed in Section 3.1, in [4], the value of each an-188

tialiased edge pixel is approximated by a blending of 2 near-189

by pixels in the 3× 3 neighborhood. Results are progressively190

refined by iterations of Equation 3. Instead of using a 3× 3191

neighborhood, Antialias Map approximates the value of each192

pixel by a blending of pixels from a larger neighborhood:193

(a) source image (b) initial value

(c) 1 iteration (d) 2 iterations

Figure 2: Antialias Map construction. (a) is the source image;
(b),(c) and (d) give the Antialias Map of a certain pixel after
0,1,2 iterations, respectively. Divisible pixels are colored black,
while indivisible pixels are colored red.

ci ≈∑
j

wi jc j (4)

where j is the interpolating pixel in the neighborhood of i, and194

wi j is the interpolating weight from pixel i to j, and satisfies195

∑ j wi j = 1. Note that wi j does not necessarily equal to w ji. Al-196

so note that Equation 4 is not an optimization target, and the197

interpolating weights are not solved from Equation 4. Instead,198

the interpolating weights are computed through an iteractive ap-199

proach, which will be explained in detail below.200

Antialias Map has two advantages over the edge model pro-201

posed in [4]. First, since it uses a larger neighborhood to ap-202

proximate an antialiased pixel, it leads to a more accurate ap-203

proximation; Secondly, the Antialias Map only depends on the204

structure of original image itself, it could be computed and s-205

tored before edit propagation, so it avoids the cost of iterations206

at run-time edit propagation stage. Antialias Map stores all in-207

terpolating weights wi j, and it is sparse since it only considers208

those edge pixels (e.g. whose edge strength βi is non-zero) and209

it only stores non-zero weights. Specifically, we store a set of210

triples (∆xi j,∆yi j,wi j) for each edge pixel i. Here j is its inter-211

polating pixel, ∆xi j,∆yi j and wi j are the x,y position offset and212

interpolating weight from i to j, respectively. In the follow-213

ing parts, we will explain how to compute the Antialias Map in214

detail.215

Initialization. In this step, we first use [4] to obtain the two216

extremum neighbors j, k, the blending factors αi j,αik and the217

edge probability βi for each pixel i. We have already explained218

how to compute those values in Section 3.1. Care must be taken219

when computing the edge probability βi. In [4], it defines edge220

strength of each pixel as the product of Sobel edge detector on221
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Initialization
For all pixels i

Compute the blending factors αi j ,αik ,
and the edge probability βi.

End For
Computation
Step 1: Antialias Map Si = {{0,0,1}}
Step 2:
for each triple {∆xi j , ∆yi j , wi j} in Si

if the pixel j is divisible and β jwi j > σa
fetch blending factors α jk1 ,α jk2 and edge probability β j;
update the weight of pixel j to (1−β j)wi j;
mark pixel j as indivisible;
add pixel k1 and k2 to Antialias Map Si, with weights
wik1 = α jk1 β jwi j ,wik2 = α jk2 β jwi j ,
mark these two pixels as divisible.

end if
end for
if iteration number reaches N

End.
else

go back to Step 2.
end if

Table 1: Pseudocode for Antialias Map Construction.

both original and filtered images, which means it requires to ob-222

tain the aliased filtered image before antialiasing recovery. We223

observe that in edit propagation, the appearances are changed224

smoothly, so that the propagated result images have roughly225

the same structure as the original images. To avoid the cost to226

generate an aliased edit propagation result, we make a modifi-227

cation, instead, we define the edge strength as the Sobel edge228

detector only on the original image. Once the edge strength is229

computed, we use Equation 2 to compute edge probability βi.230

Note that only the pixels with non-zero βi are considered as an-231

tialiased edge pixels and stored in Antialias Map. The pixels232

with zero value of βi are considered as non-edge pixels.233

Constructions. Similar to [4], we construct Antialias Map234

by a few iterations. However, they obtain the final antialiased235

results through iterations, but we obtain Antilias Map through236

iterations, which could be precomputed and stored before edit237

propagation. For each antialiased edge pixel i, the Antialias238

Map starts with a set containing only one triple:239

Si = {{0,0,1}} (5)

This means that the value of the pixel i could be seen as the240

value of itself multipled by weight 1.0, which is definitely true.241

We also illustrate this iteration process in Figure 2. As shown242

in Figure 2 (b), now the Antialias Map only contains itself with243

weight 1.0. And this pixel is marked as divisible, which is paint-244

ed using black color in Figure 2.245

At each iteration, we expand each divisible pixel (e.g. j)246

into 3 pixels. These 3 pixels are the two neighboring extremum247

pixels (e.g., k1 and k2) and itself (e.g. j), whose corresponding248

weights are defined in Equation 3. Specially, the weight of j249

is replaced by (1− β j)wi j and j is marked as indivisible; the250

two newly added extremum pixels are marked as divisible, and251

their weights are set as wik1 = α jk1β jwi j and wik2 = α jk2 β jwi j,252

respectively. At the next iterations, we recursively find the di-253
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Figure 3: the size of Antialias Map to the size of image as a
function of threshold σa. This curve is generated from a 240K
photographed image (the image in Figure 1) and using maxi-
mum iteration number N = 4.

visible pixels and expand them to new pixels.254

Let’s also take Figure 2 as example and explain this process255

in detail. For simplicity, we assume that for all the pixels, the256

edge probability β is 0.8 and the blending factor α is 0.5. After257

the first iteration, the center pixel is expanded to 3 pixels, so258

that the Antialias Map grows to contain 3 triples (as shown in259

Figure 2 (c) ):260

Si = {{0,0,0.2},{0,−1,0.4},{1,1,0.4}} (6)

After the second iterations, similarly, the newly added 2 pix-261

els in first iteration are both expanded to 3 pixels, so that the262

Antialias Map grows to contain 7 triples (as shown in Figure 2263

(d) ):264

Si = {{0,0,0.2},{0,−1,0.08},{1,1,0.08},

{−1,0,0.16},{1,−2,0.16},{0,1,0.16},{2,0,0.16}}
(7)

Notice that at all iterations, the sum of weights equals to265

one. From an algebraic aspect, Antialias Map could also be266

treated as expanding Equation 3 to multiple variables. The267

triples in Antialias Map will extend to (2N + 1)× (2N + 1)268

neighborhood after n iterations.269

Stop Criterion. The size of the Antialias Map grows as we270

iterate. We define 2 criterions to stop the recursive iteration:271

• When iteration number reaches a predefined number N;272

• When the result product(product of the interpolation weight273

of a divisible pixel wi j and its edge probability β j) is s-274

maller than a predefined threshold σa.275

The pseudocode of Antialias Map construction is given in Ta-276

ble 1. We have also tested how two parameters influence the277

performance of our algorithm. Figure 3 illustrates the size of278

Antialias Map to the size of image as a function of weight279

threshold σa. Setting σa = 0 means the iteration stops only280

when it reaches the largest iteration number N, while setting281

σa = 1 means no iteration. As shown in Figure 3, when in-282

creasing σa from 0 to 1, the size of Antialias Map decreases283

rapidly.284
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4. Improved Framework of Edit Propagation285

In this section we will discuss how to use Antialias Map in286

the pipeline of edit propagation to remove the aliasing artifacts.287

In edit propagation, users specify edits in some sparse locations288

on images/videos, and those edits are automatically propagated289

to the whole data satisfying the policy that nearby pixels having290

similar appearances receive similar edits. Usually, they define291

a feature vector for each pixel, usually a 5-dimensional vector292

, which combines color (e.g. 3D), pixel position (e.g. 2D). For293

videos, another dimensional is added to account for time. The294

affinity between every two pixels are defined by the Euclidean295

distance between their feature vectors, which is then used to296

guide the propagation. Commonly, edit propagation methods297

could be divided into two groups, depending on which scheme298

is used to formulate the problem: optimization based [1, 3] and299

interpolation based [2]. We show that Antialias Map could be300

used in both groups for antialias recovery.301

4.1. Optimization based Edit Propagation302

Backgrounds. As mentioned above, the affinity value between303

two pixels i, j is usually defined as:304

zi j = exp
(
−(fi− f j)

2
)

(8)

where fi is the feature vector of pixel i, which is defined as a 5D305

vector for images:306

fi = (ci/σc, pi/σp) (9)

where ci,pi is the color in LAB color space and the pixel po-307

sition of pixel i, respectively. σc and σp are two parameters to308

control the relative propagating distance.309

In [3], edit propagation is formulated as an optimization310

problem. Solving propagated edits e is deduced to minimize311

the energy function below:312

∑
i, j

b jzi j(ei−g j)
2 +λ ∑

i, j
zi j(ei− e j)

2 (10)

where i, j enumerates all pixels; b j is 1 when pixel j is covered313

by stroke and is 0 elsewhere; g j is the user specified edit at pix-314

el j; ei is the propagated edit at pixel i that we want to solve.315

The first term accounts for how it satisfies user input while the316

second term accounts for the edit propagation policy that simi-317

lar pixels receive similar edits. λ is used to control the relative318

weight between the two terms and is usually set to ∑ j b j/∑ j 1319

to make the two terms have roughly the same contributions.320

Since the energy function in Equation 10 is quadratic, min-321

imizing it is equivalent to solving a linear system defined by322

a large affinity matrix. Therefore, they used low rank colum-323

n sampling to approximate the affinity matrix and further pro-324

posed an approximated algorithm to fast find a solution. To325

accelerate edit propagation and extend it to videos, Xu et al. [1]326

proposed to use k-d tree to organize pixels into hierarchical327

clusters. Instead of propagating on pixels, they propagate on328

clusters, whose number is much smaller than the number of329

pixels, thus acceleration is achieved. Finally, edits of individual330

pixels are obtained by multi-linear interpolation from clusters.331

They also adopted an optimization based method to solve for332

edit propagation.333

Modified Formulation. As illustrated in the teaser image, tra-334

ditional edit propagation produces artifacts on object bound-335

aries. This artifact could be easily explained. Assume a very336

simple image composed of 2 region, one red region and anoth-337

er blue region. The edge pixels along the boundary of the two338

regions would appear yellow due to antialiasing. Suppose user339

specifies some edits on the red region, it is also desired to prop-340

agate the edits to the edge pixels with some weight according to341

antialiasing opacity. However, since the edge pixels appearance342

yellow, it exhibits a large difference to pixels in the red region,343

hence would not receive any propagated edits.344

To address this issue, we use Antialias Map, in which, the
yellow edge pixels would be represented by a linear blending of
some red and blue neighboring pixels. Instead of propagating to
the edge pixels, we propagate to the neighboring interpolating
pixels, and obtain the edit of edge pixel by blending the edits
from the interpolating pixels. Mathematically, we modify the
formulation in Equation 10 to:

∑
i, j

b jγiγ jzi j(e′i−g′j)
2 +λ ∑

i, j
γiγ jzi j(e′i− e′j)

2 (11)

where i, j enumerates all interpolating pixels; γi considers the345

multiplicity of pixel i serving as interpolating pixels, which is346

defined as γi = ∑k wki; g′j is defined as g′j = ∑k wk jg j/∑k wk j.347

The modified energy function has the same form as the orig-348

inal energy function in Equation 10, so that it could be solved349

in the same way using either low rank column sampling [3] or350

k-d tree clustering [1].351

Interpolation. After solving for the edits e′ on the interpolating352

pixels in Equation 11, it is easy to obtain the edits on the edge353

pixels through interpolation:354

ei = ∑
j

wi je′j (12)

4.2. Interpolation based Edit Propagation355

Backgrounds. While most works adopt an optimization based356

method to solve edit propagation, Li et al. [2] proposed a d-357

ifferent approach. They observe that the edits span in the high358

dimensional feature space form a smooth function, which could359

be approximated well by function interpolations. Therefore,360

they use sum of RBFs (Radial Basis Function) to approximate361

edits:362

ei ≈∑
m

amG(‖fi− fm‖) (13)

where m iterates over all RBFs; G is RBF Gaussian function;363

am,fm is the m-th RBF coefficient and center, respectively. The364

centers of RBFs are randomly selected from the pixels covered365

by user stroke. The coefficients of RBFs are solved by mini-366

mizing the sum of differences on user specified edits:367

∑
j
(g j−∑

m
amG(‖f j− fm‖))2 (14)
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where j iterates over all pixels covered by user strokes. To re-368

strict the coefficients to be non-negative, they use a non-negative369

least square solver.370

Modified Formulation. The above formulation would also371

produce aliasing artifacts on object boundaries. To remove the372

artifacts using Antialias Map, similarly, we build the smooth373

function over the interpolating pixels, instead of the original374

pixels. Equation 14 is modified to:375

∑
j

γ j(g′j−∑
m

amG(‖f j− fm‖))2 (15)

where j iterates over all interpolating pixels that have contri-376

butions to user stroke pixels; γ j considers the multiplicity of377

pixel j serving as interpolating pixels, which is defined as γ j =378

∑k wk j; g′j is defined as g′j = ∑k wk jg j/∑k wk j, where k is iter-379

ating over user stroke pixels.380

After solving for the RBF coefficients, we use Equation 13381

to obtain the edits on interpolating pixels. Lastly, we use Equa-382

tion 12 to obtain the edits on the edge pixels.383

5. Comparisons and Results384

5.1. Comparisons385

Comparison of weight threshold σa. In Figure 4, we have386

compared edit propagation results generated by Xu et al. [1]387

and by our method with different weight threshold σa. From388

the results, we can see artifacts using the method by Xu et al,389

where the pixels along the boundary of the toy undesirably ap-390

pear green. Using a large value of σa (e.g. σa = 0.8,0.4) still391

produce these artifacts. But using a relatively small value of σa392

(e.g. σa = 0.1,0.0) fully removes the artifacts.393

Comparison of maximum iteration number N. In Figure 5,394

we have compared edit propagation results generated by Xu395

et al. [1] and by our method with different maximum iteration396

number N. From the results, we can see that using a relatively397

large value of N (e.g. N = 4,8) could produce smooth transi-398

tions along boundaries.399

5.2. Results400

All these results and performance are obtained using a con-401

sumer level PC with a 3.0GHz Intel Core2Duo CPU and 4GB402

RAM. As demonstrated in the comparisons, setting σa = 0.1403

and N = 4 already leads to very good results. So in our imple-404

mentation, we fix σa = 0.1 and N = 4. These two parameters405

could still be adjusted for better performance or accuracy. In406

our experiment, for a single image, the total size of Antialias407

Map (e.g. the total number of triples) is usually about 1.5−2.0408

times of the image resolution. So that it only needs small extra409

space to store the Antialias Map.410

In Figure 6, we give 2 image results generated by the k-d411

tree approach [1] and by our method. In Figure 7, we give 2412

image results generated by the RBF interpolation approach [2]413

and by our method. In Figure 8, we give 1 image result gener-414

ated by AppProp [3] and by our method. In Figure 9, we com-415

pare a video example using the k-d tree approach [2] and using416

our method, respectively. In all these examples, after applying417

our methods, the aliasing artifacts along the object boundaries418

are successfully removed. The performance value is reported in419

Table 2. Note that the time cost reported for the video example420

in Table 2 is the time for processing the whole video (all the421

frames). It could be substantially accelerated for fast preview-422

ing purposes, when users desire to see a single (or a few) frames423

of the video, and only the pixels on the previewing frames need424

to be propagated.425

6. Conclusion426

In this paper we have presented a novel, efficient approach427

to remove aliasing artifacts in edit propagation. we introduced428

a novel representation, the Antialias Map, to store the blending429

weights and relative positions of nearby interpolating pixels for430

each edge pixel. While previous works [1, 2, 3] directly consid-431

er edge pixels in edit propagation process, instead, we replace432

each edge pixel by its interpolating pixels and consider those433

interpolating pixels in edit propagation process. Our method is434

independent of a specific edit propagation algorithm and could435

be integrated into any existing edit propagation methods such as436

[1, 2, 3]. The results demonstrates that our method effectively437

and efficiently restores the antialiased smooth edges.438

There are some works that we would like to address in the439

future. First, we currently deal with videos frame by frame, and440

for each frame we use a 2D Antialias Map. We would like to441

explore methods to extend Antialias Map to a 3D representa-442

tion so that it could also handle motion blurs in the temporal di-443

mension; Secondly, we would like to investigate how Antialias444

Map could be used for other image related applications, such as445

image compositing [56, 57, 58, 59] and non-photorealistic ren-446

dering [60], since it is also desired to preserve antialiased edges447

when compositing new images.448
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Table 2: Performance comparison between the k-d tree method [1], our method combined with the k-d tree approach, RBF
method [2] and our method combined with the RBF method. Both running time and memory cost are reported.
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Figure 6: Results generated by Xu et al. [1] and by our method. The first column give the original images; the second and third
columns are results generated by Xu et al.; the fourth and fifth columns are results generated by our method.
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original image result of Li et al. our result

Figure 7: Results generated by Li et al. [2] and by our method. The first column give the original images; the second and third
columns are results generated by Li et al.; the fourth and fifth columns are results generated by our method.

original image result of An et al. our result

Figure 8: Results generated by An et al. [3] and by our method. The first column give the original images; the second and third
columns are results generated by An et al.; the fourth and fifth columns are results generated by our method.
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Figure 9: Video results generated by Li et al. and our method. We have shown two frames of the video and clearly our method
improves a lot along the boundaries.
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